LeetCode-in-Rust

295. Find Median from Data Stream

Hard

The median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value and the median is the mean of the two middle values.

Implement the MedianFinder class:

Example 1:

Input

["MedianFinder", "addNum", "addNum", "findMedian", "addNum", "findMedian"]
[[], [1], [2], [], [3], []]

Output: [null, null, null, 1.5, null, 2.0]

Explanation:

MedianFinder medianFinder = new MedianFinder();
medianFinder.addNum(1); // arr = [1]
medianFinder.addNum(2); // arr = [1, 2]
medianFinder.findMedian(); // return 1.5 (i.e., (1 + 2) / 2)
medianFinder.addNum(3); // arr[1, 2, 3]
medianFinder.findMedian(); // return 2.0 

Constraints:

Follow up:

Solution

use std::collections::BinaryHeap;
use std::cmp::Reverse;

struct MedianFinder {
    max_heap: BinaryHeap<i32>,                // Max heap for lower half
    min_heap: BinaryHeap<Reverse<i32>>,       // Min heap for upper half
}

/**
 * `&self` means the method takes an immutable reference.
 * If you need a mutable reference, change it to `&mut self` instead.
 */

impl MedianFinder {
    /** Initialize your data structure here. */
    pub fn new() -> Self {
        MedianFinder {
            max_heap: BinaryHeap::new(),                // Max heap (lower half)
            min_heap: BinaryHeap::new(),                // Min heap (upper half), with Reverse for min behavior
        }
    }

    /** Add a number to the data structure */
    pub fn add_num(&mut self, num: i32) {
        if self.max_heap.is_empty() || *self.max_heap.peek().unwrap() > num {
            self.max_heap.push(num);  // Add to the max heap (lower half)
        } else {
            self.min_heap.push(Reverse(num));  // Add to the min heap (upper half)
        }

        // Balance the two heaps
        if (self.max_heap.len() as i32 - self.min_heap.len() as i32).abs() > 1 {
            self.balance();
        }
    }

    /** Balance the heaps */
    fn balance(&mut self) {
        if self.max_heap.len() > self.min_heap.len() {
            self.min_heap.push(Reverse(self.max_heap.pop().unwrap()));
        } else {
            self.max_heap.push(self.min_heap.pop().unwrap().0);
        }
    }

    /** Find the median of the numbers added so far */
    pub fn find_median(&self) -> f64 {
        if self.max_heap.len() == self.min_heap.len() {
            (*self.max_heap.peek().unwrap() as f64 + self.min_heap.peek().unwrap().0 as f64) / 2.0
        } else if self.max_heap.len() > self.min_heap.len() {
            *self.max_heap.peek().unwrap() as f64
        } else {
            self.min_heap.peek().unwrap().0 as f64
        }
    }
}

/**
 * Your MedianFinder object will be instantiated and called as such:
 * let obj = MedianFinder::new();
 * obj.add_num(num);
 * let ret_2: f64 = obj.find_median();
 */